Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

app2(app2(add, 0), y) -> y
app2(app2(add, app2(s, x)), y) -> app2(s, app2(app2(add, x), y))
app2(app2(mult, 0), y) -> 0
app2(app2(mult, app2(s, x)), y) -> app2(app2(add, app2(app2(mult, x), y)), y)
app2(app2(app2(rec, f), x), 0) -> x
app2(app2(app2(rec, f), x), app2(s, y)) -> app2(app2(f, app2(s, y)), app2(app2(app2(rec, f), x), y))
fact -> app2(app2(rec, mult), app2(s, 0))

Q is empty.


QTRS
  ↳ Non-Overlap Check

Q restricted rewrite system:
The TRS R consists of the following rules:

app2(app2(add, 0), y) -> y
app2(app2(add, app2(s, x)), y) -> app2(s, app2(app2(add, x), y))
app2(app2(mult, 0), y) -> 0
app2(app2(mult, app2(s, x)), y) -> app2(app2(add, app2(app2(mult, x), y)), y)
app2(app2(app2(rec, f), x), 0) -> x
app2(app2(app2(rec, f), x), app2(s, y)) -> app2(app2(f, app2(s, y)), app2(app2(app2(rec, f), x), y))
fact -> app2(app2(rec, mult), app2(s, 0))

Q is empty.

The TRS is non-overlapping. Hence, we can switch to innermost.

↳ QTRS
  ↳ Non-Overlap Check
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app2(app2(add, 0), y) -> y
app2(app2(add, app2(s, x)), y) -> app2(s, app2(app2(add, x), y))
app2(app2(mult, 0), y) -> 0
app2(app2(mult, app2(s, x)), y) -> app2(app2(add, app2(app2(mult, x), y)), y)
app2(app2(app2(rec, f), x), 0) -> x
app2(app2(app2(rec, f), x), app2(s, y)) -> app2(app2(f, app2(s, y)), app2(app2(app2(rec, f), x), y))
fact -> app2(app2(rec, mult), app2(s, 0))

The set Q consists of the following terms:

app2(app2(add, 0), x0)
app2(app2(add, app2(s, x0)), x1)
app2(app2(mult, 0), x0)
app2(app2(mult, app2(s, x0)), x1)
app2(app2(app2(rec, x0), x1), 0)
app2(app2(app2(rec, x0), x1), app2(s, x2))
fact


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP2(app2(add, app2(s, x)), y) -> APP2(app2(add, x), y)
APP2(app2(app2(rec, f), x), app2(s, y)) -> APP2(f, app2(s, y))
APP2(app2(mult, app2(s, x)), y) -> APP2(add, app2(app2(mult, x), y))
APP2(app2(mult, app2(s, x)), y) -> APP2(app2(add, app2(app2(mult, x), y)), y)
APP2(app2(add, app2(s, x)), y) -> APP2(s, app2(app2(add, x), y))
APP2(app2(add, app2(s, x)), y) -> APP2(add, x)
FACT -> APP2(s, 0)
FACT -> APP2(rec, mult)
APP2(app2(mult, app2(s, x)), y) -> APP2(app2(mult, x), y)
APP2(app2(app2(rec, f), x), app2(s, y)) -> APP2(app2(f, app2(s, y)), app2(app2(app2(rec, f), x), y))
FACT -> APP2(app2(rec, mult), app2(s, 0))
APP2(app2(mult, app2(s, x)), y) -> APP2(mult, x)
APP2(app2(app2(rec, f), x), app2(s, y)) -> APP2(app2(app2(rec, f), x), y)

The TRS R consists of the following rules:

app2(app2(add, 0), y) -> y
app2(app2(add, app2(s, x)), y) -> app2(s, app2(app2(add, x), y))
app2(app2(mult, 0), y) -> 0
app2(app2(mult, app2(s, x)), y) -> app2(app2(add, app2(app2(mult, x), y)), y)
app2(app2(app2(rec, f), x), 0) -> x
app2(app2(app2(rec, f), x), app2(s, y)) -> app2(app2(f, app2(s, y)), app2(app2(app2(rec, f), x), y))
fact -> app2(app2(rec, mult), app2(s, 0))

The set Q consists of the following terms:

app2(app2(add, 0), x0)
app2(app2(add, app2(s, x0)), x1)
app2(app2(mult, 0), x0)
app2(app2(mult, app2(s, x0)), x1)
app2(app2(app2(rec, x0), x1), 0)
app2(app2(app2(rec, x0), x1), app2(s, x2))
fact

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(add, app2(s, x)), y) -> APP2(app2(add, x), y)
APP2(app2(app2(rec, f), x), app2(s, y)) -> APP2(f, app2(s, y))
APP2(app2(mult, app2(s, x)), y) -> APP2(add, app2(app2(mult, x), y))
APP2(app2(mult, app2(s, x)), y) -> APP2(app2(add, app2(app2(mult, x), y)), y)
APP2(app2(add, app2(s, x)), y) -> APP2(s, app2(app2(add, x), y))
APP2(app2(add, app2(s, x)), y) -> APP2(add, x)
FACT -> APP2(s, 0)
FACT -> APP2(rec, mult)
APP2(app2(mult, app2(s, x)), y) -> APP2(app2(mult, x), y)
APP2(app2(app2(rec, f), x), app2(s, y)) -> APP2(app2(f, app2(s, y)), app2(app2(app2(rec, f), x), y))
FACT -> APP2(app2(rec, mult), app2(s, 0))
APP2(app2(mult, app2(s, x)), y) -> APP2(mult, x)
APP2(app2(app2(rec, f), x), app2(s, y)) -> APP2(app2(app2(rec, f), x), y)

The TRS R consists of the following rules:

app2(app2(add, 0), y) -> y
app2(app2(add, app2(s, x)), y) -> app2(s, app2(app2(add, x), y))
app2(app2(mult, 0), y) -> 0
app2(app2(mult, app2(s, x)), y) -> app2(app2(add, app2(app2(mult, x), y)), y)
app2(app2(app2(rec, f), x), 0) -> x
app2(app2(app2(rec, f), x), app2(s, y)) -> app2(app2(f, app2(s, y)), app2(app2(app2(rec, f), x), y))
fact -> app2(app2(rec, mult), app2(s, 0))

The set Q consists of the following terms:

app2(app2(add, 0), x0)
app2(app2(add, app2(s, x0)), x1)
app2(app2(mult, 0), x0)
app2(app2(mult, app2(s, x0)), x1)
app2(app2(app2(rec, x0), x1), 0)
app2(app2(app2(rec, x0), x1), app2(s, x2))
fact

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs with 8 less nodes.

↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(add, app2(s, x)), y) -> APP2(app2(add, x), y)

The TRS R consists of the following rules:

app2(app2(add, 0), y) -> y
app2(app2(add, app2(s, x)), y) -> app2(s, app2(app2(add, x), y))
app2(app2(mult, 0), y) -> 0
app2(app2(mult, app2(s, x)), y) -> app2(app2(add, app2(app2(mult, x), y)), y)
app2(app2(app2(rec, f), x), 0) -> x
app2(app2(app2(rec, f), x), app2(s, y)) -> app2(app2(f, app2(s, y)), app2(app2(app2(rec, f), x), y))
fact -> app2(app2(rec, mult), app2(s, 0))

The set Q consists of the following terms:

app2(app2(add, 0), x0)
app2(app2(add, app2(s, x0)), x1)
app2(app2(mult, 0), x0)
app2(app2(mult, app2(s, x0)), x1)
app2(app2(app2(rec, x0), x1), 0)
app2(app2(app2(rec, x0), x1), app2(s, x2))
fact

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be strictly oriented and are deleted.


APP2(app2(add, app2(s, x)), y) -> APP2(app2(add, x), y)
The remaining pairs can at least by weakly be oriented.
none
Used ordering: Combined order from the following AFS and order.
APP2(x1, x2)  =  x1
app2(x1, x2)  =  app1(x2)
add  =  add
s  =  s

Lexicographic Path Order [19].
Precedence:
[add, s]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app2(app2(add, 0), y) -> y
app2(app2(add, app2(s, x)), y) -> app2(s, app2(app2(add, x), y))
app2(app2(mult, 0), y) -> 0
app2(app2(mult, app2(s, x)), y) -> app2(app2(add, app2(app2(mult, x), y)), y)
app2(app2(app2(rec, f), x), 0) -> x
app2(app2(app2(rec, f), x), app2(s, y)) -> app2(app2(f, app2(s, y)), app2(app2(app2(rec, f), x), y))
fact -> app2(app2(rec, mult), app2(s, 0))

The set Q consists of the following terms:

app2(app2(add, 0), x0)
app2(app2(add, app2(s, x0)), x1)
app2(app2(mult, 0), x0)
app2(app2(mult, app2(s, x0)), x1)
app2(app2(app2(rec, x0), x1), 0)
app2(app2(app2(rec, x0), x1), app2(s, x2))
fact

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(mult, app2(s, x)), y) -> APP2(app2(mult, x), y)

The TRS R consists of the following rules:

app2(app2(add, 0), y) -> y
app2(app2(add, app2(s, x)), y) -> app2(s, app2(app2(add, x), y))
app2(app2(mult, 0), y) -> 0
app2(app2(mult, app2(s, x)), y) -> app2(app2(add, app2(app2(mult, x), y)), y)
app2(app2(app2(rec, f), x), 0) -> x
app2(app2(app2(rec, f), x), app2(s, y)) -> app2(app2(f, app2(s, y)), app2(app2(app2(rec, f), x), y))
fact -> app2(app2(rec, mult), app2(s, 0))

The set Q consists of the following terms:

app2(app2(add, 0), x0)
app2(app2(add, app2(s, x0)), x1)
app2(app2(mult, 0), x0)
app2(app2(mult, app2(s, x0)), x1)
app2(app2(app2(rec, x0), x1), 0)
app2(app2(app2(rec, x0), x1), app2(s, x2))
fact

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be strictly oriented and are deleted.


APP2(app2(mult, app2(s, x)), y) -> APP2(app2(mult, x), y)
The remaining pairs can at least by weakly be oriented.
none
Used ordering: Combined order from the following AFS and order.
APP2(x1, x2)  =  x1
app2(x1, x2)  =  app1(x2)
mult  =  mult
s  =  s

Lexicographic Path Order [19].
Precedence:
[mult, s]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app2(app2(add, 0), y) -> y
app2(app2(add, app2(s, x)), y) -> app2(s, app2(app2(add, x), y))
app2(app2(mult, 0), y) -> 0
app2(app2(mult, app2(s, x)), y) -> app2(app2(add, app2(app2(mult, x), y)), y)
app2(app2(app2(rec, f), x), 0) -> x
app2(app2(app2(rec, f), x), app2(s, y)) -> app2(app2(f, app2(s, y)), app2(app2(app2(rec, f), x), y))
fact -> app2(app2(rec, mult), app2(s, 0))

The set Q consists of the following terms:

app2(app2(add, 0), x0)
app2(app2(add, app2(s, x0)), x1)
app2(app2(mult, 0), x0)
app2(app2(mult, app2(s, x0)), x1)
app2(app2(app2(rec, x0), x1), 0)
app2(app2(app2(rec, x0), x1), app2(s, x2))
fact

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

APP2(app2(app2(rec, f), x), app2(s, y)) -> APP2(f, app2(s, y))
APP2(app2(app2(rec, f), x), app2(s, y)) -> APP2(app2(f, app2(s, y)), app2(app2(app2(rec, f), x), y))
APP2(app2(app2(rec, f), x), app2(s, y)) -> APP2(app2(app2(rec, f), x), y)

The TRS R consists of the following rules:

app2(app2(add, 0), y) -> y
app2(app2(add, app2(s, x)), y) -> app2(s, app2(app2(add, x), y))
app2(app2(mult, 0), y) -> 0
app2(app2(mult, app2(s, x)), y) -> app2(app2(add, app2(app2(mult, x), y)), y)
app2(app2(app2(rec, f), x), 0) -> x
app2(app2(app2(rec, f), x), app2(s, y)) -> app2(app2(f, app2(s, y)), app2(app2(app2(rec, f), x), y))
fact -> app2(app2(rec, mult), app2(s, 0))

The set Q consists of the following terms:

app2(app2(add, 0), x0)
app2(app2(add, app2(s, x0)), x1)
app2(app2(mult, 0), x0)
app2(app2(mult, app2(s, x0)), x1)
app2(app2(app2(rec, x0), x1), 0)
app2(app2(app2(rec, x0), x1), app2(s, x2))
fact

We have to consider all minimal (P,Q,R)-chains.